If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10+b^2=100
We move all terms to the left:
10+b^2-(100)=0
We add all the numbers together, and all the variables
b^2-90=0
a = 1; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·1·(-90)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*1}=\frac{0-6\sqrt{10}}{2} =-\frac{6\sqrt{10}}{2} =-3\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*1}=\frac{0+6\sqrt{10}}{2} =\frac{6\sqrt{10}}{2} =3\sqrt{10} $
| -10(x+1.7=-3 | | 2x=+10x-48=0 | | 1/2x-5=45 | | -4u+44=8(u-8) | | 100+b^2=10 | | 1.2x+3.6=4.8 | | 2x^2+5-7x=0 | | 2.5j=5 | | 2j=10/12 | | 4x-20=5x+15 | | n^-⅔=9 | | 621=x | | 3/4k=30 | | -20+15=2-16x+11 | | -v/2=38 | | 5x2+9x-15=0 | | 5-3c+2c=5 | | 7k−–23=72 | | 1=-4(u-5)-11 | | 3x+5x+54-x+7=88 | | .36(e-50)=288 | | 4x-6x+19=29 | | 14x-14=8x+10 | | -43=7d-5d-19 | | 215-x=129 | | 5×-10=25,x=2 | | .7u+34=174 | | 2x-6-0.3(9x-6)=13 | | -(z-18)=4 | | 20100=4x | | -6y-3y=-99 | | 118-x=273 |